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Abstract

We propose a new framework for mediating supersymmetry breaking

through an extra dimension. It predicts positive scalar masses and solves

the supersymmetric avor problem. Supersymmetry breaks on a \source"

brane that is spatially separated from a parallel brane on which the standard

model matter �elds and their superpartners live. The gauge and gaugino �elds

propagate in the bulk, the latter receiving a supersymmetry breaking mass

from direct couplings to the source brane. Scalar masses are suppressed at the

high scale but are generated via the renormalization group. We briey discuss

the spectrum and collider signals for a range of compacti�cation scales.
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I. INTRODUCTION

Electroweak precision data indicate that the mechanism of electroweak symmetry break-

ing involves a weakly coupled Higgs �eld. Through radiative corrections the Higgs mass is

quadratically sensitive to any scale of new physics. It is therefore hard to understand why

the Higgs mass is so much lower than other mass scales which we believe exist in nature, for

example the Planck scale.

Low energy supersymmetry is arguably the most compelling framework for addressing

this problem: in the minimal supersymmetric standard model (MSSM) one simply intro-

duces superpartners which cancel the divergences order by order in perturbation theory.

Unfortunately this solution to the hierarchy problem introduces new problems. Accidental

avor symmetries which suppress avor changing neutral currents (FCNC) in the standard

model (SM) are badly broken by the supersymmetry breaking scalar masses and A-terms

in a generic version of the MSSM [1]. Experimental limits on FCNCs force us to consider

only very special regions in parameter space where the squark and slepton mass matrices

are nearly degenerate [2] or aligned with quark and lepton masses [3]. Two recent proposals

for the communication of supersymmetry breaking which do give such degenerate squark

and slepton masses are gauge mediation [4,5] and anomaly mediation [6,7].1

In this article we propose a new mechanism for communicating supersymmetry break-

ing that leads to a distinctive spectrum of superpartner masses. It is phenomenologically

viable and respects the approximate avor symmetries of the SM. In our scenario, the

matter �elds of the MSSM (quarks, leptons, Higgs �elds and superpartners) are localized

on a 3 + 1 dimensional brane (the \matter" brane) embedded in extra dimensions. The

SU(3) � SU(2) � U(1) gauge �elds and gauginos live in the bulk of the extra dimensions

[15]. Supersymmetry is broken (dynamically) on a parallel \source" brane that is separated

from the matter brane in the extra dimensions [17]. Note that in contrast to hidden sector

models, our source brane is not hidden at all; the SM gauge �elds couple directly to both

branes. This set-up leads to the following spectrum of superpartner masses at the compact-

i�cation scale: gauginos obtain masses through their direct couplings to the supersymmetry

breaking source and all other supersymmetry breaking masses are suppressed by the spatial

separation of the source and matter branes and/or by loop factors. Thus after integrating

out the extra dimensional dynamics at the compacti�cation scale L�1 we obtain the MSSM

with the only non-negligible supersymmetry breaking being the gaugino masses. This im-

plies that our scenario is very predictive since all supersymmetry breaking parameters can

be traced to a single source.

1It is also possible to decouple the problematic avor violating e�ects by by making the �rst two

generations of scalars heavy [8,9]. However in practice realistic models do require some degree of

degeneracy [10] or alignment [11].
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It is easy to understand that this high scale boundary condition is also very attractive

phenomenologically. The absence of soft scalar masses and trilinear A terms implies that

the only source of avor violation is the Yukawa matrices. This solves the supersymmetric

avor problem by a super-GIM mechanism. Furthermore, gaugino masses contribute to

the renormalization of the scalar masses with the correct sign to give only positive scalar

squared masses. There is one subtlety in this argument which leads to successful radiative

electroweak symmetry breaking. Because of their strong couplings to gluinos, the masses of

colored scalars become large much faster than the supersymmetry breaking Higgs masses.

As a consequence the heavy stops running in loops involving the large top Yukawa coupling

eventually drive the up-type Higgs (mass)2 negative. Thus radiative electroweak symmetry

breaking [12] is also automatic in our framework.

For L�1 near the Planck scale, the phenomenology of this model is similar to that of

\no-scale" supergravity [13] with uni�ed gaugino masses. However, in our scenario the

compacti�cation scale is a free parameter, so the superpartner spectrum and the associated

phenomenology varies with this parameter.

In the next section we present our theoretical framework and discuss the coupling of

bulk gauge �elds to the two branes. In Section III we calculate the e�ective gaugino masses

and scalar masses resulting from integrating out the higher dimensional physics for gen-

eral supersymmetry breaking sectors. As an example we then present a speci�c model of

supersymmetry breaking. In Section IV a renormalization group analysis is performed, de-

termining the spectrum of superpartner masses at the weak scale. We �nd that the NLSP is

nearly always the stau, and we show that current LEP bounds on charged sparticle masses

already restrict a signi�cant portion of parameter space. Finally, the collider signals are

briey mentioned. In Section V we discuss various potential solutions to the � problem and

in Section VI we conclude.

II. SUPERSYMMETRY BREAKING FROM A DISTANCE

Our underlying assumption is that all the MSSM matter �elds live on a three brane in

extra dimensions whereas the gauge �elds live in the bulk2. Furthermore we assume that

supersymmetry is broken dynamically on a brane which is a distance d away from the matter

brane. The supersymmetry breaking \source" brane could either be a three brane or { in

the case of more than one extra dimension { it could also be of higher dimension. For

the explicit calculations in the next section we will assume that the two branes are at the

boundaries of one extra dimension such that d = L.

2We could also have additional larger dimensions in which only gravity propagates [14]; such

purely gravitational dimensions do not alter our framework signi�cantly.
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FIGURES
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\matter brane"

MSSM matter �elds
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\source brane"

SUSY breaking sector

FIG. 1. Loop diagram through the bulk, illustrating how scalar masses are acquired (and

suppressed).

The basic idea is that supersymmetry breaking couples directly to the gauginos in the

bulk whereas locality in the extra dimensions forbids direct couplings between matter �elds

and the SUSY breaking sector (see Fig. 1).

The matter superpartners receive their masses via loop contributions through the bulk.

Depending on the dimensionality of the bulk and the source brane, as well as the details

of the supersymmetry breaking sector, their masses are suppressed by varying powers of

d. This additional suppression of the scalar masses relative to the gaugino masses leads

to a very predictive low energy theory: after integrating out the extra dimensions at the

scale 1=L we obtain the MSSM with { to a good approximation { only soft SUSY breaking

gaugino masses.

As with gauge mediation and anomaly mediation, this framework solves the SUSY avor

problem in that the only avor violation comes from the Yukawa couplings [2,13].3 This is

because contact terms between MSSM matter and the supersymmetry breaking sector are

exponentially suppressed due to the fact that these are non-local interactions at the high

scale as in the anomaly mediated scenario of [6]. The advantage of our scenario over anomaly

mediation is that all scalar mass squareds (except for the up-type Higgs) receive positive

contributions from renormalization group running. Also, in gauge mediation, stringent con-

straints must be imposed on the supersymmetry breaking sector in order to prevent negative

or logarithmically enhanced scalar masses. Here the scalar masses at the compacti�cation

scale are small enough to render such concerns irrelevant. In addition, direct couplings

3We are assuming that the avor scale, the scale at which the Yukawa couplings are generated, is

at or above the compacti�cation scale.
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between �elds on the source brane and matter brane are automatically forbidden by local-

ity, while in gauge mediation, forbidding messenger-matter couplings requires a non-generic

superpotential.

Before we go on to describe some speci�cs of the model, we would like to discuss a few

general properties of the framework.

i. strong coupling: One might worry that our theory is non-renormalizable and therefore

not predictive. In particular, the gauge coupling in �ve dimensions carries dimensions of

(mass)�1=2 and the theory becomes strongly coupled at high energies. At lower energies the

e�ects of the strong coupling are included in the unknown coe�cients of higher dimensional

operators. We can estimate the scale of strong coupling M in terms of the volume of the

extra dimensions V by using
1

g24
=

V

g24+n
� V Mn

(4�)2
:

Here g4 and g4+n are the four- and higher-dimensional gauge couplings respectively, and we

de�nedM as the scale where the e�ective dimensionless coupling constant is nonperturbative

(g4+nM
n=2 � 4�). For example, compactifying on a strip of length L givesML = 16�2=g24 �

O(100). Thus as long as we only consider external momenta � M and use M to cut o�

loop momenta, our e�ective theory is perturbative and predictive.

ii. mass scales: The relevant mass scales in our scenario are the compacti�cation scale 1=L,

the cuto� scaleM (which { for simplicity { we set equal to the scale at which supersymmetry

breaking is communicated4), and the supersymmetry breaking VEV
p
F . F is determined

by the scale at which supersymmetry breaking is mediated and the weak scale by requiring

that the gaugino masses m� are of order Mweak. As shown in i., strong coupling appears

at distances about 100 times shorter than L, thus M <� 100 L�1. Therefore only one scale

is left undetermined. We take the compacti�cation scale to correspond to this parameter

and allow it to vary between 104 � 1016 GeV. The lower limit comes from imposing �ne-

tuning constraints at the weak scale. We also impose L�1 <� MGUT because even higher

compacti�cation scales lead to essentially the same boundary conditions at MGUT : uni�ed

gaugino masses and negligible scalar masses.

iii. uni�cation and proton decay: Our framework is fully uni�able, and even though our

framework does not require it we do assume gauge uni�cation. This assumption implies

gaugino mass uni�cation which makes our theory more predictive. Grand uni�cation might

occur at or below the compacti�cation scale (MGUT � 1=L) in which case the running and

meeting of the gauge couplings is entirely four-dimensional. However we could also have

MGUT > 1=L in which case the couplings will exhibit power-law running from the compact-

4Messengers could appear on the source brane at a scale below the cuto�. In this case the

messenger scale plays the role of the cuto�, although one must require M >
� 5L�1 to suppress

higher dimensional contributions to MSSM scalar masses.
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i�cation scale to the uni�cation scale [18]. This would lower the GUT scale, possibly all the

way down to of order 106 GeV. For such low scales proton decay via higher dimensional

operators or X and Y gauge boson interactions represents a potential disaster. A solution to

this problem which would be very natural in our context is to have quarks and leptons live

on separate \branes" in the extra dimensions. The separation forbids direct local couplings

between quarks and leptons, and proton decay via X and Y gauge bosons would be expo-

nentially suppressed by the massive Yukawa propagators of X and Y propagating between

the quark- and lepton branes [19,20].

iv. B� versus tan �: Naively, our model predicts B� = 0 at the high scale from which we

can determine tan �. However this prediction probably should not be taken very seriously

because, as it stands, the framework has a �-problem. The mechanism which sets � to

the weak scale will likely also set B�. Therefore we treat tan� as a free parameter in our

analysis. We discuss di�erent attempts at solving the � problem in Section V.

To be more speci�c let us now specialize to the case of one extra dimension which we

parameterize by the coordinate x5. For convenience we choose the matter and source branes

to be located at opposite ends of the the extra dimension. None of the physics we discuss

depends on this choice, what is important is that the separation is greater than the short

distance cut-o� length scale. Coupling supersymmetric three branes to a supersymmetric

bulk gauge theory is complicated by the fact that the minimal amount of supersymmetry in

�ve dimensions corresponds to N = 2 supersymmetry in four dimensions. Ignoring auxiliary

�elds the minimal �ve-dimensional vector super�eld contains a real scalar �, a vector AN ,

and a four component spinor �. They decompose as follows when reduced to four dimensions

(� AN �) �! (A� �L) + (�+ iA5 �R)

5� d vector 4 � d vector 4 � d chiral (2.1)

where �R=L � 1
2
(1� 5)�. In order to break the additional supersymmetry and to give mass

to the unwanted adjoint chiral super�eld we compactify the �fth dimension on an orbifold.

We choose a Z2 orbifold which acts as x5 !�x5 on the circle x5 2 (�L;L]. The Z2 breaks

half of the supersymmetries by distinguishing the components of the vector super�eld. We

take it to act as

(A� �L) (x; x5) �! (A� �L) (x;�x5)
(�+ iA5 �R) (x; x5) �! � (�+ iA5 �R) (x;�x5) ; (2.2)

which allows a massless mode for the 4-d vector but not for the 4-d chiral super�eld. In

practice this means that we expand the �elds of the vector super�eld with cosine KK wave

functions, whereas the chiral super�eld is expanded in sine modes5.

5For a more detailed description of the orbifold we refer the reader to Ref. [21].
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In order to write couplings between the bulk �elds and brane �elds we note that at the

boundaries the components of the N = 2 �elds which are non-vanishing exactly correspond

to a 4-d vector multiplet. Therefore, we can couple them to boundary �elds in the same

way as we would couple a four-dimensional N = 1 vector multiplet. The action is then

L =

Z
d5x[ L5 + �(x5) Lm + �(x5� L) Ls ] (2.3)

where L5 is the bulk Lagrangian for the SM gauge �elds

L5 = �
1

2
tr (FMN)

2 + tr (�i�MDM�) + : : : (2.4)

HereM;N label all �ve dimensions, �� � � are the usual four-dimensional gammamatrices,

�5 = i5, DM is the �ve-dimensional covariant derivative, and we suppressed all terms

involving the scalar adjoint � and auxiliary �elds. Note that there is such an expression for

each of the gauge multiplets in SU(3)� SU(2) � U(1).

The supersymmetry breaking sector on the source brane at x5 = L can be quite arbitrary.

It is one of the strengths of our framework that it is compatible with many di�erent SUSY

breaking sectors. The only requirement of this sector is that the gaugino masses generated

are not highly suppressed compared to the scale F=M . If there is a singlet chiral super�eld

S with an F at or near the supersymmetry breaking scale squared, then it will give the

dominant contribution to gaugino masses. Though it is possible to produce a viable spectrum

even without a singlet, we will assume the singlet exists. We briey discuss the alternative

in Section VI.

A. Source brane action

The source brane action is in general very complicated and involves all the �elds required

to break supersymmetry dynamically as well as couplings to the bulk gauge �elds. However,

in order to compute the MSSM gaugino and scalar masses only a small subset of the oper-

ators are necessary. If we assume that the leading supersymmetry breaking VEV is the F

component of a singlet chiral super�eld S, then we only need terms of the e�ective action

which couple this singlet to the MSSM gauge �elds. The leading superpotential term which

couples S to the bulk gauge �elds and which contains only two �eld strengths W is of the

form

Ls �
Z
d2�

S

M2
WW + h:c: (2.5)

The gauge �eld strength super�elds W here are �ve-dimensional with mass dimension two,

and the S �eld is four-dimensional with mass dimension one. This term contributes a gluino

mass �(x5�L) FS=M2 which is localized on the source brane. Terms with more powers of S

do not give rise to new supersymmetry breaking interactions; they only give higher order (in

S=M) contributions to the gluino mass and are therefore irrelevant. Next we consider the
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most general supersymmetry breaking K�ahler potential terms with only two W s, arbitrary

powers of S and no derivatives. (Note that Lorentz invariance forbids terms of the form

WW .) The leading non-vanishing terms contain a single Sy

Ls �
Z
d2�d2�

1

M3
SyWW (1 +

S

M
+ � � �) =

Z
d2�

F
y

S

M3
WW (1 +

S

M
+ � � �) : (2.6)

Equivalent terms with less suppression are already contained in the superpotential. There-

fore there are no important supersymmetry breaking terms in the K�ahler potential with no

derivatives.

Using arguments similar to those given above and the constraint D _�W
_�
= D�W� it is

straightforward to determine all K�ahler potential terms with two derivatives which give rise

to new supersymmetry breaking. The most important such terms are non-supersymmetric

contributions to kinetic terms such as

Ls �
Z
d2�d2�

SyS

M5
WD2W �! FSF

y

S

M5
�L 6@�L : (2.7)

In the next section we will see that this supersymmetry breaking correction to the gaugino

kinetic term gives rise to (small) scalar masses when inserted into loop diagrams.

III. THE MSSM SCALAR AND GAUGINO MASSES

In this section we compute the MSSM soft supersymmetry breaking masses that result

from integrating out the extra dimensions. We always assume that loop momenta are larger

than L�1. Smaller loop momenta are more conveniently dealt with by considering the four-

dimensional e�ective theory, as we do in Section IV.

It is straightforward to determine the gaugino masses resulting from the term eq. (2.5)

on the source brane by expanding the �ve-dimensional gaugino �elds in KK modes. The

zero mode which corresponds to the light four-dimensional gaugino has an x5-independent

wave function, which when normalized to produce a canonical kinetic term has height 1=
p
L.

Thus the gaugino mass is

m� =
1

ML

FS

M
: (3.1)

To calculate the scalar masses more e�ort is required. The leading contributions come

from loop diagrams which involve both the scalars on the matter brane as well as super-

symmetry violating operators on the source brane (Fig. 1). Any of the �elds in the �ve-

dimensional gauge multiplets can be exchanged. In principle, this leads to a large number

of diagrams which need to be calculated. However, since we are only interested in showing

that the scalar masses are small, we only compute two representative diagrams with bulk

fermion exchange. The other diagrams are of comparable size and therefore also negligible.
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It is most convenient to compute the �ve-dimensional Feynman diagrams in momentum

space in four dimensions and position space in the �fth dimension. This mixed position-

momentum space calculation is well adapted to the symmetries of the problem (translation

invariance in four dimensions but broken translation invariance in x5). The necessary propa-

gators are obtained by partially Fourier transforming normal momentum space propagators,

whereby care needs to be taken to properly take into account the orbifold boundary con-

ditions eq. (2.2). For example, the scalar � propagator with 4-d Euclidean momentum q2

propagating from coordinate b to a in the x5-direction is

P0(q
2; b; a) =

2

L

1X
n;m=1

sin(�pna)
�nm

q2 + p2
n

sin(pmb) � �
Z

1

�1

dp

2�

eip(b�a)

q2 + p2
= �e

�jb�aj

p
q2

2
p
q2

: (3.2)

We have implemented the orbifold boundary conditions for � by expanding in sine modes

with Fourier momenta pn = n�=L. By approximating the sum with an integral we have

assumed large volume (L > 1=
p
q2). Performing the sum exactly is straightforward [22] but

not necessary for our purposes.

Analogously the fermionic propagator is obtained by Fourier expanding the momentum

space propagator in sine and cosine wave functions for the right and left handed components

respectively

P(q; a; b) = 2

L

1X
n;m=0

"
PL

cos(pna)p
2
�n0

� PR sin(pna)

#
�nm

6q � i5pn

q2 + p2
n

"
PR

cos(pmb)p
2
�m0

+ PL sin(pmb)

#
:

(3.3)

Again pn = n�=L, the factor of
p
2
�n0

arises from the di�erent wave function normalization of

the zero mode, and again we have Wick-rotated the four-momentum to Euclidean space. At

the boundaries x5 = 0 and x5 = L only the left-handed gaugino component is non-vanishing

and can be coupled directly to the scalars and the supersymmetry breaking sector. The

other components require @5=M derivatives in the couplings and are therefore subleading

(after regularization and renormalization of the divergent momentum integrals). We only

keep the leading cosine components of the propagator. Summing over momenta we �nd

P(q; 0; L) = PL 6q
q sinh(qL)

� 2PL 6q
q

e�qL : (3.4)

Armed with this very simple formula for the 5-d gaugino propagator it is straightforward

to compute the diagram with two gluino mass insertions in Fig. 1. Ignoring Casimirs and

factors of 2 we �nd

g25

�
FS

M2

�2

�
Z

d4q

(2�)4
tr

"
1

6q PLP(q; 0; L) C PT (q;L;L) C�1 P(q;L; 0)
#

� g25
16�2

�
FS

M2

�2 1

L3
=

g24
16�2

m2
�
: (3.5)
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We see that the scalar masses are suppressed by three powers of the brane separation which

can be absorbed into the four-dimensional gauge couplings and gaugino masses. Thus we

�nd that the scalar mass contributions from this diagram are smaller compared to the gluino

masses by a loop factor. Note that these small contributions to the scalar masses are avor

universal and do not give rise to avor changing e�ects.

As a second example we compute the contribution from a supersymmetry breaking gaug-

ino wave function renormalization insertion eq. (2.7) on the source brane. We �nd

g25
F 2
S

M3
�
Z

d4q

(2�)4
tr

"
1

6q PL P(q; 0; L) 6q P(q;L; 0)
#

� g25
16�2

�
FS

M2

�2 1

ML4
=

g24
16�2

m2
�

1

ML
; (3.6)

which is suppressed by an additional power of the separation compared to the contribution

of eq. (3.5). Note that one could have obtained this result from dimensional analysis: soft

scalar masses require two insertions of supersymmetry breaking F 2
S
, the powers of M in the

denominator are determined by the dimensionality of the operators which we insert on the

source brane, the exponent of the separation L can then be determined by dimensional anal-

ysis. This dimensional analysis also shows that diagrams involving even higher dimensional

operators (such as operators with additional @5=M derivatives) are suppressed by additional

powers of (ML)�1.

In summary we �nd that the MSSM scalar mass squareds are suppressed relative to the

gaugino masses by at least a loop factor, and are therefore negligible compared to the masses

which are generated from the (four-dimensional) renormalization group evolution between

the compacti�cation scale and the weak scale. This conclusion also holds for the other soft

supersymmetry breaking parameters involving matter �elds, the A-terms and B�. Note

that these contributions to soft parameters are avor-diagonal and are thus irrelevant with

regards to bounds on FCNCs.

A. Example: gauge mediation with branes

Here we demonstrate the above results with an explicit model for the supersymmetry

breaking sector on the source brane. We take the source brane action to be identical to the

ordinary messenger sector of gauge mediation where the SM gauge �elds are replaced by the

boundary values of the bulk gauge �elds

Ls =
Z
d4� Qye2gV [A�;�L]Q+ eQye�2gV [A�;�L] eQ+

Z
d2� SQ eQ : (3.7)

Here Q + eQ are the messenger chiral super�elds which we take to transform under the

SM gauge interactions with the quantum numbers 5 + 5 of SU(5). The vector super�eld

V [A�; �L] contains the SM gauge �elds and gauginos in the normalization appropriate for

�ve-dimensional �elds. The S �eld has been rescaled to absorb the Yukawa coupling, and
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as in ordinary gauge mediation we assume that it acquires supersymmetry preserving and

violating expectation values

S =M + FS�
2 :

Then the messenger fermions obtain the Dirac mass M whereas the messenger scalars in Q

and eQ acquire the (mass)2 M2 � FS. Note that role of the cut-o� (or new physics) scale

in our more general e�ective theory of the source brane is played by the messenger mass in

this example.

The bulk gauginos obtain a mass which is localized on the source brane from a one-loop

diagram with messenger scalars and fermions in the loop as in ordinary gauge mediation.

Since the messengers are stuck to the brane this calculation is entirely four-dimensional and

we �nd the e�ective gaugino mass

g25
16�2L

FS

M
: (3.8)

The gauge couplings g5 here are �ve-dimensional (and in the GUT normalization); they are

related to four-dimensional couplings by g25=L = g24. We see that our gaugino masses are

identical to ordinary four dimensional gauge mediation gaugino masses.

The computation of the scalar masses is more involved. We simply quote the result

obtained by Mirabelli and Peskin [21] who computed the scalar masses at two loops for

arbitrary separation. Expanding to second order in FS and to leading order in (LM)�1 < 1

their result reduces to

m2
5 = 2C

 
g25

16�2L

FS

M

!2
�(3)

(ML)2
= m2

4

�(3)

(ML)2
: (3.9)

Herem2
5 is the scalar mass in the �ve-dimensional theory,m2

4 is the ordinary four-dimensional

gauge mediation result, and C is a group theory factor of order one which depends on the

quantum numbers of the matter and source �elds. The important conclusion is that the

scalar mass squareds are suppressed relative to gaugino masses by a factor of 1=(ML)2.

Again assuming a distance which is at least a factor of 5 larger than the messenger scale,

we �nd that eq. (3.9) is negligible compared to the masses which are generated from four-

dimensional running.

To compare this to our general analysis of the previous section note that the scalar mass

squared scales as 1=L4 when expressed in terms of �ve-dimensional quantities. This is in

agreement with the scaling found for eq. (3.6). The scalar mass contribution scaling as 1=L3

eq. (3.5) corresponds to a three loop diagram in the gauge mediation model. We see that

the scalar mass squareds are suppressed by at least (ML)�2 or a loop factor.

IV. SPECTRUM AND PHENOMENOLOGY

To calculate the spectrum in our scenario we use the renormalization group to connect

the physics near the cuto� scale with the weak scale. In particular, there are two scaling
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regions that must be considered when evolving masses and couplings: between the cuto�

scale and the compacti�cation scale, and between the compacti�cation scale and the weak

scale.

Above the compacti�cation scale the theory is �ve-dimensional and we need to evolve

masses and couplings according to �ve-dimensional evolution equations. Happily this turns

out to be rather straightforward. The calculations of the previous section showed that the

scalar masses which are generated above the compacti�cation scale are negligible. Therefore

we do not need to evolve either scalar masses or A-terms in the �ve-dimensional theory.

The gaugino mass evolution is important however. For this purpose it is most convenient to

think of the theory as four-dimensional with KK excitations. Across each KK threshold, the

four-dimensional gauge and gaugino beta functions are modi�ed, and such corrections must

be included to calculate the low energy spectra. However, the ratio of the gaugino mass

to the gauge coupling squared is invariant to one-loop, as in the normal four-dimensional

case6 (for discussion of this, see Ref. [24]). Summing over the towers of KK thresholds up to

the cuto� M� can be represented by terms that resemble corrections to the renormalization

group equations to both the gauge couplings [18] and gaugino masses and gives the same

result [25]. Speci�cally, assuming gauge coupling uni�cation, the relations

M1

g21
=

M2

g22
=

M3

g23
(4.1)

hold at any scale to one-loop order in the �-functions. This means that we can incorporate

the extra dimensional running of the gaugino masses simply by starting with the boundary

condition, Eq. (4.1), at the compacti�cation scale. Note that this relation also implies that

our predictions for gaugino masses will be nearly independent of the compacti�cation scale.

Just below the compacti�cation scale, our theory is four-dimensional with nonzero gaug-

ino masses, vanishing scalar masses, and vanishing trilinear scalar couplings. Scalar masses

and trilinear scalar couplings are regenerated through renormalization group evolution be-

tween the compacti�cation scale and the weak scale, and this provides the basis to calculate

the spectrum and phenomenology. The parameters for the model can be chosen to be

L�1; M1=2; tan �; sign(�) :

Here M1=2 is the common gaugino mass at the uni�cation scale. For L�1 < 1016 GeV

the individual gaugino masses at the compacti�cation scale can be determined from

Ma(L
�1)=g2

a
(L�1) = M1=2=g

2
unif with gunif � 0:7. Imposing electroweak symmetry breaking

6This can also be seen by noting that the gaugino mass is in the same supermultiplet as the

holomorphic gauge coupling � and therefore evolves in parallel. For the usual 4-d arguments [23]

to go through even in the theory with KK modes, the orbifold boundary conditions must preserve

4-d N = 1 supersymmetry as in our framework.
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constraints at the weak scale determines �2, leaving tan� and sign(�) unknown7. Generally,

the scalar masses are proportional to M1=2 to reasonable accuracy unless Yukawa coupling

e�ects are large (i.e., particularly for the up-type Higgs mass), or weak interaction eigenstate

mixing is important (i.e., stau masses at moderate to large tan �).

10
3

10
5

10
7

10
9

10
11

10
13

10
15

renormalization scale  [GeV]

−400

−200

0

200

400

600

800

m
as

s 
 [G

eV
]

FIG. 2. Evolution of several soft masses as a function of the renormalization scale with the

input parameters L�1 = 1016 GeV, M1=2 = 350 GeV, and tan� = 10. The (top, middle, bottom)

dashed lines correspond to (M3, M2, M1), while the solid lines from top to bottom correspond to

m ~Q1
, mHd

, m~�1 , sign(m
2
Hu

)jm2
Hu

j
1=2 respectively. (The kink in the up-type Higgs mass is due to

taking the square-root.)

As a �rst example, we take L�1 = 1016 GeV,M1=2 = 350 GeV, and tan� = 10, and show

in Fig. 2 the evolution of the soft masses as a function of the renormalization scale. Several

generic features are evident from the graph: Gaugino masses evolve in parallel with gauge

couplings; the ratios M3=M1 and M3=M2 increase as the renormalization scale is decreased,

causing larger squark masses relative to slepton and Higgs masses. Initially,m2
Hu

runs toward

positive values, but is quickly overcome by interactions with the heavy stops and runs to

negative values at the weak scale. With these parameters, the stau is the lightest sparticle

of the MSSM spectrum.

7While B� is what appears in the Lagrangian, we choose to parameterize our ignorance by tan�.
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FIG. 3. The weak scale masses for several sparticles are shown as a function of the compact-

i�cation scale L�1 with M1=2 = 500 GeV and tan� = 3. The top dotted line is m~g, the top and

bottom solid lines are m~uL and m~�1 , and the top and bottom dashed lines are m ~N3
and m ~N1

. We

emphasize that L�1 is parameter of our model not to be confused with the renormalization scale.

The results of the previous analysis are the same as those in \no-scale" supergravity

models [13]. However, in our framework, the detailed phenomenology depends on the com-

pacti�cation scale. Obviously the size of the scalar masses depends on the extent of evolution,

proportional to �M2
1=2 log(MZL), but also derived parameters such as � are sensitive to the

compacti�cation scale. In Fig. 3 we show the weak scale masses of several MSSM �elds as a

function of the compacti�cation scale for M1=2 = 500 GeV and tan � = 3. A generic predic-

tion of our model is that the stau is the NLSP for most compacti�cation scales. However,

we note that for very large L�1 >� 1016 GeV with small tan � <� 3, the lightest neutralino
~N1 becomes the NLSP (or LSP, as discussed below). The kinks in the mass contours of ~N1

and ~N3 in Fig. 3 indicate a \cross over" in the dominant interaction eigenstate content of

the neutralinos from bino-like to Higgsino-like as the compacti�cation scale is lowered below

L�1 � 105 GeV. This suggests that, for example, a measurement of the gauge eigenstate

content of the lightest neutralino is sensitive to the compacti�cation scale.

The scaling of scalar masses proportional to � M2
1=2 log(MZL) is clearly visible from

Fig. 3; it a�ects the squarks most dramatically but is also important for sleptons, particularly

the lightest (mostly right-handed) stau. Note that this allows us to extract signi�cant limits

on M1=2 as a function of L�1 by requiring that the stau avoids the lower bounds from the
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recent LEP searches for charged sparticles. In Fig. 4 we show the lower bound on M1=2 as

a function of the compacti�cation scale. The best bound comes from the lower limit on the

stau mass, although low tan � <� 3 is also restricted by the limit on the lightest Higgs boson.

In addition, notice that for large values of tan�, the lower bound on M1=2 is considerably

strengthened. This is due to large mixing in the stau mass matrix from the o�-diagonal

term proportional to m�� tan � that reduces the mass of the lightest stau mass eigenstate.
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FIG. 4. The lower bound on M1=2 as a function of the compacti�cation scale obtained by

requiring that all charged sparticles and the lightest Higgs are heavier than the current LEP limit

(of about 90 GeV). The contours correspond to the limits for particular values of tan�.

As we implied above, the gravitino is the LSP for most of the parameter space. Assuming

that FS is the largest supersymmetry breaking VEV, its mass is given bym3=2 � FS=MPlanck.

However, for very large compacti�cation scales the mass of the stau which roughly scales

as M1=2 � F=(M2L) can become smaller than m3=2. Then the stau could become the LSP

which is probably in conict with cosmology. The turn over occurs whenMPlanck � F=(M2L)

or L�1 � 1014�16 GeV. We �nd it amusing that coincidentally the largest compacti�cation

scales also correspond to the regime where the lightest neutralino can be LSP, which would

render the stau cosmologically safe again. The viability of this regime clearly deserves further

study.

Superpartner production at colliders always results in two or more NLSPs (directly or

indirectly), each of which then decays into the LSP with a decay length that is expected to

be at least of order the size of the detector. If the stau is the NLSP one expects clearly visible
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charged stau tracks in detectors resulting from meta-stable staus that escape the detector8.

Strategies to extract this signal from the muon background have been explored in Ref. [26],

with the result that rather signi�cant regions of parameter space can be probed. For very

small compacti�cation scales L�1 <� 105 GeV, it is possible that the stau decay length could

be measurable. In the small region of parameter space where the neutralino is the (N)LSP,

the characteristic signal is missing energy, analogous to gauge-mediation models with a large

messenger scale, or ordinary supergravity models.

V. THE � TERM

As in other models of supersymmetry breaking we appear to have a � problem in our

framework. The � term is the dimensionful superpotential coupling of Hu and Hd and

is required to be at the weak scale in order to naturally produce electroweak symmetry

breaking while maintaining agreement with experimental lower bounds on sparticle masses.

From naturalness [28], one would expect a dimensionful quantity to be of order the fun-

damental scale in the model, in our case M . However, it is well known that superpotential

couplings can easily be non-generic, and � can also be set to zero by imposing a discrete

version of a Peccei-Quinn symmetry [29]. Allowing the discrete symmetry to break spon-

taneously with the breaking of supersymmetry, it is easy to produce a weak-scale � term.

However, it is di�cult to produce soft Higgs-mass terms at the same scale (they normally

come out too large). Here we present some possible solutions to the � problem. This new

framework may allow for more novel solutions and we leave these for future work.

Perhaps the most elegant possibility for a solution lies with the Next-to-Minimal Super-

symmetric Standard Model (NMSSM) [30]. Inserting this mechanism into our framework

means adding a gauge singlet N to the matter brane and replacing the � term in the super-

potential by:

WN = �NHuHd +
k

3
N3: (5.1)

As the soft masses are run from the compacti�cation scale to the weak scale, N develops

a scalar vacuum expectation value of order the weak scale for some range of parameters �

and k. Thus an e�ective � term is produced. This mechanism was thoroughly analyzed

by de Gouvêa, Friedland and Murayama in the context of gauge mediation with a range

of messenger scales [31]. They found the NMSSM could produce a � term but only at the

expense of giving unacceptably light masses to Higgs bosons and/or sleptons. However, our

boundary conditions are di�erent and may push the results in the right direction.

A twist on this solution is to put the singlet N in the bulk. The �rst obvious requirement

is that the F term of N must be suppressed relative to the supersymmetry breaking scale.

8A stau NLSP could also have interesting interesting implications for cosmology [27].
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Otherwise, FN would generically give non-universal scalar masses. If there are �elds on the

source brane charged under the SM gauge group (say, extra vector-like quarks) to which N

couples, then a solution may be found as suggested in [32,31]. This solution appears to be

�ne-tuned and the �ne tuning comes from the same source as the �ne tuning in the MSSM.

So this mechanism could explain the dynamical origin of the � term, but it does not give a

dynamical reason for the cancellation of large soft parameters. One could also consider more

than one singlet and could place singlets in the bulk or on either of the branes. This would

allow certain couplings to be small or vanish, possibly giving the right parameter values for

a natural � term as in [33].

The suggestion of Chacko et al. [34] to put the Higgs �elds in the bulk (while keeping S

on the source brane) is also interesting. The � term could be produced on the opposite brane

via the Giudice-Masiero mechanism [35]. The operators in the (5-dimensional) Lagrangian

would be:Z
d4�

"
��

Sy

M2
HuHd + �B

SSy

M3
HuHd +

SSy

M3
(�uuHuH

y

u
+ �ddHdH

y

d
) + h:c:

#
�(x5 � L) (5.2)

where the coupling constants �i are dimensionless. Thus the natural value of � would be

FS=(M
2L), where as the natural value of the soft parameters B�, m2

Hu
and m2

Hd
would be

F 2
S
=(M3L) � �(FS=M). We �nd the standard problem of producing soft terms which are too

large. We could of course set the appropriate couplings to be small (� (ML)�1), however

we do not have a compelling theoretical reason for doing so. Also we note that placing

the Higgs �elds in the bulk changes the spectrum of the model signi�cantly as their scalar

masses would be generated above the compacti�cation scale. We have found the resulting

phenomenology is viable and thus a detailed analysis would be interesting.

In summary, there exist a number of ways to produce a � term dynamically in our

scenario. However, they all appear to require small or �ne-tuned parameters. Thus �nding

a natural origin for � and B� of the right size is still an open problem.

VI. DISCUSSION

We have presented a model of supersymmetry breaking in extra dimensions in which

only gauginos receive soft masses at a high scale, and scalar masses come dominantly from

renormalization group running. The model clearly avoids the supersymmetric avor prob-

lem, and all scalar mass squareds (except for a Higgs) are positive at the weak scale. The

model is highly predictive, depending only on three parameters and a sign (M1=2, L
�1, tan �,

and the sign of �), and allows for compacti�cation scales as low as 104 GeV.

For simplicity, we required the gaugino masses to unify at or above the compacti�cation

scale. This comes from the assumption that the theory is uni�ed at a high scale and that

threshold e�ects are small. By relaxing either assumption, one could impose more general

boundary conditions, i.e., with split gaugino masses. As long as the gluino is heavy enough to
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give squark masses larger than Higgs masses, and the bound in Fig. 4 is respected (properly

reinterpreted as a bound on M1), then supersymmetry breaking through transparent extra

dimensions would still work perfectly.

The only requirement on the source brane is that there exists a singlet whose F compo-

nent is comparable to the scale of supersymmetry breaking. However, even this requirement

may be relaxed. Without a singlet, the main contribution to the gaugino masses is via

anomaly mediation { a one-loop e�ect [6,7]. The dominant contributions to the scalars

would come from the anomaly-mediated contributions and from non-renormalizable oper-

ators inserted in loops (as in Sec. III), both of which are avor-blind. For small values of

ML, the latter may dominate allowing for a (di�erent) realistic spectrum.

While the size of the compacti�cation scale does not allow for direct detection of KK

modes, it does leave an imprint on TeV scale phenomenology. The �eld content of the

lightest neutralino (bino versus Higgsino) changes with L�1 and therefore so do the couplings

to matter. In addition, while the gaugino spectrum is approximately independent of scale,

the scalar spectrum is not, thus this model is distinguishable from a minimal supergravity

model if L�1 � MPlanck. In fact, by measuring the scalar spectrum (e.g., at the NLC) one

may be able to determine the scale at which the scalar masses unify and thus the size of the

extra dimensions!

Note added: While this work was in progress we learned that similar ideas are being

pursued independently by Chacko, Luty, Nelson, and Pont�on [36].

ACKNOWLEDGMENTS

Discussions with N. Arkani-Hamed, A.G. Cohen, A. de Gouvêa, J.L. Feng, A. Friedland,
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